Data-driven extensions to HMM statistical dependencies
نویسنده
چکیده
In this paper, a new technique is introduced that relaxes the HMM conditional independence assumption in a principled way. Without increasing the number of states, the modeling power of an HMM is increased by including only those additional probabilistic dependencies (to the surrounding observation context) that are believed to be both relevant and discriminative. Conditional mutual information is used to determine both relevance and discriminability. Extended Gaussian-mixture HMMs and new EM update equations are introduced. In an isolated word speech database, results show an average 34% word error improvement over an HMM with the same number of states, and a 15% improvement over an HMM with a comparable number of parameters.
منابع مشابه
Buried Markov models for speech recognition
Good HMM-based speech recognition performance requires at most minimal inaccuracies to be introduced by HMM conditional independence assumptions. In this work, HMM conditional independence assumptions are relaxed in a principled way. For each hidden state value, additional dependencies are added between observation elements to increase both accuracy and discriminability. These additional depend...
متن کاملA Data-Driven Model Parameter Compensation Method for Noise-Robust Speech Recognition
A data-driven approach that compensates the HMM parameters for the noisy speech recognition is proposed. Instead of assuming some statistical approximations as in the conventional methods such as the PMC, the various statistical information necessary for the HMM parameter adaptation is directly estimated by using the Baum-Welch algorithm. The proposed method has shown improved results compared ...
متن کاملExtensions to HMM-based Statistical Word Alignment Models
This paper describes improved HMM-based word level alignment models for statistical machine translation. We present a method for using part of speech tag information to improve alignment accuracy, and an approach to modeling fertility and correspondence to the empty word in an HMM alignment model. We present accuracy results from evaluating Viterbi alignments against human-judged alignments on ...
متن کاملOptions for Modelling Temporal Statistical Dependencies in an Acoustic Model for ASR
In this paper we consider the combination of hidden Markov models based on Gaussian mixture densities (GMM-HMM) and linear dynamic models (LDM) as the acoustic model for automatic speech recognition systems. In doing so, the individual strengths of both models, i.e. the modelling of long-term temporal dependencies by the GMM-HMM and the direct modelling of statistical dependencies between conse...
متن کاملEnacting Complex Data Dependencies from Activity-Centric Business Process Models
Execution of process models requires a process engine to handle control flow and data dependencies. While control flow is well supported in available activity-oriented process engines, data dependencies have to be specified manually in an error-prone and time-consuming work. In this paper, we present an extension to the process engine Activiti allowing to automatically extract complex data depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998